VWAP (Volume Weighted Average Price) Indicator
Overview
VWAP is a critical indicator that combines price and volume to show the true average price of an asset. This implementation will include standard deviation bands and volume analysis for enhanced trading signals.
Status
- Domain Model Design
- Core Implementation
- API Integration
- Testing
- Documentation
Components
1. Domain Model
interface VWAPData {
// Core Values
vwap: number; // Current VWAP value
vwap_upper_band: number; // Upper standard deviation band
vwap_lower_band: number; // Lower standard deviation band
// Analysis
price_to_vwap_ratio: number; // Price relative to VWAP
position: VWAPPosition; // Position enum
volume_trend: VWAPVolumeTrend; // Volume trend analysis
volume_strength: StrengthLevel; // Volume strength
// Signals
signal: SignalType; // Trading signal
signal_strength: number; // Signal confidence (0-1)
}
enum VWAPPosition {
ABOVE_VWAP = 'above_vwap',
BELOW_VWAP = 'below_vwap',
AT_VWAP = 'at_vwap',
}
enum VWAPVolumeTrend {
ACCUMULATION = 'accumulation',
DISTRIBUTION = 'distribution',
NEUTRAL = 'neutral',
}
2. Configuration
interface VWAPSettings {
std_dev_multiplier: number; // Band calculation (default: 2.0)
reset_on_timeframe: boolean; // Reset on new period (default: true)
band_threshold: number; // AT_VWAP threshold (default: 0.02)
volume_threshold: number; // Volume trend detection (default: 1.5)
}
3. API Endpoints
REST API
GET /v1/vwap- Parameters:
symbol: Trading pairtimeframe: Candle timeframestd_dev_multiplier: Optional band multiplierreset_on_timeframe: Optional reset flag
- Parameters:
WebSocket
- Channel:
vwap- Updates: Real-time VWAP and band values
- Frequency: On each trade/tick
Technical Implementation
1. Core Calculation
def compute_vwap(df: pd.DataFrame) -> pd.DataFrame:
"""
Calculate VWAP and standard deviation bands.
Args:
df: DataFrame with OHLCV data
Returns:
DataFrame with VWAP calculations
"""
# Typical price * volume
df['typical_price'] = (df['high'] + df['low'] + df['close']) / 3
df['tp_volume'] = df['typical_price'] * df['volume']
# Cumulative values
df['cum_tp_volume'] = df['tp_volume'].cumsum()
df['cum_volume'] = df['volume'].cumsum()
# VWAP
df['vwap'] = df['cum_tp_volume'] / df['cum_volume']
# Standard deviation bands
df['variance'] = (...) # Implementation details
df['std_dev'] = np.sqrt(df['variance'])
df['vwap_upper'] = df['vwap'] + (df['std_dev'] * settings.std_dev_multiplier)
df['vwap_lower'] = df['vwap'] - (df['std_dev'] * settings.std_dev_multiplier)
return df
2. Analysis Functions
def analyze_volume_trend(df: pd.DataFrame, row_idx: int) -> VWAPVolumeTrend:
"""Analyze volume distribution around VWAP."""
# Implementation details
def analyze_position(price: float, vwap: float, threshold: float) -> VWAPPosition:
"""Determine price position relative to VWAP."""
# Implementation details
def generate_signal(
position: VWAPPosition,
volume_trend: VWAPVolumeTrend,
price_ratio: float
) -> Tuple[SignalType, float]:
"""Generate trading signal and strength."""
# Implementation details
3. Integration Points
- Volume analysis integration with OBV
- Signal combination with other indicators
- Real-time calculation optimization
- WebSocket stream management
Configuration
TIMEFRAME_SETTINGS: Dict[str, VWAPSettings] = {
"1m": VWAPSettings(
std_dev_multiplier=2.0,
reset_on_timeframe=True,
band_threshold=0.02,
volume_threshold=1.5
),
"5m": VWAPSettings(...),
"15m": VWAPSettings(...),
"1h": VWAPSettings(...),
"4h": VWAPSettings(...),
"1d": VWAPSettings(...)
}
Development Guidelines
1. Performance Optimization
- Use vectorized operations for calculations
- Implement efficient cumulative sum updates
- Cache intermediate results where possible
- Optimize memory usage for real-time updates
2. Testing Strategy
def test_vwap_calculation():
"""Test basic VWAP calculation accuracy."""
def test_band_calculation():
"""Test standard deviation bands."""
def test_volume_analysis():
"""Test volume trend detection."""
def test_signal_generation():
"""Test trading signal generation."""
def test_reset_behavior():
"""Test timeframe reset functionality."""
3. Error Handling
- Handle missing/invalid data
- Validate configuration parameters
- Manage timeframe transitions
- Handle real-time calculation edge cases
Dependencies
- NumPy: Efficient numerical operations
- Pandas: Data manipulation
- FastAPI: REST API endpoints
- WebSocket: Real-time updates
Future Enhancements
- Multi-timeframe VWAP analysis
- Anchored VWAP calculations
- Volume profile integration
- Machine learning signal enhancement